Large width nearest prototype classification on general distance spaces
نویسندگان
چکیده
منابع مشابه
Soft nearest prototype classification
We propose a new method for the construction of nearest prototype classifiers which is based on a Gaussian mixture ansatz and which can be interpreted as an annealed version of learning vector quantization (LVQ). The algorithm performs a gradient descent on a cost-function minimizing the classification error on the training set. We investigate the properties of the algorithm and assess its perf...
متن کاملDistance Metric Learning for Large Margin Nearest Neighbor Classification
We show how to learn aMahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to signif...
متن کاملNearest Neighbour Distance Matrix Classification
A distance based classification is one of the popular methods for classifying instances using a point-to-point distance based on the nearest neighbour or k-NEAREST NEIGHBOUR (k-NN). The representation of distance measure can be one of the various measures available (e.g. Euclidean distance, Manhattan distance, Mahalanobis distance or other specific distance measures). In this paper, we propose ...
متن کاملPROTOTYPE GENERATION FOR NEAREST NEIGHBOR CLASSIFICATION: SURVEY OF METHODS 1 Prototype Generation for Nearest Neighbor Classification: Survey of Methods
Prototype generation techniques have arisen as very competitive methods for enhancing the nearest neighbor classifier through data reduction. A great number of methods tackling the prototype generation problem have been proposed in the literature. This technical report provides a survey of the most representative algorithms developed so far. A previously proposed categorization has been used to...
متن کاملOptimized distance metrics for differential evolution based nearest prototype classifier
In this article, we introduce a differential evolution based classifier with extension for selecting automatically the applied distance measure from a predefined pool of alternative distances measures to suit optimally for classifying the particular data set at hand. The proposed method extends the earlier differential evolution based nearest prototype classifier by extending the optimization p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2018
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2018.04.045